首页 > 汽车焦点 > 汽车焦点 > 芯趋势丨存算一体,AI计算的最优解?

芯趋势丨存算一体,AI计算的最优解?

发布时间:2024-08-09 16:15:02来源: 15210273549

随着人工智能与大数据技术的飞速发展,我们正步入一个以大模型为核心的新时代。然而在这一浪潮中,传统的冯·诺依曼架构却逐渐显露出其狭隘性。

该架构虽然奠定了现代计算机的基础,但在面对海量数据处理与大模型训练时,却受限于存储与计算分离的设计,导致数据搬运成为性能瓶颈,严重制约了计算效率的提升。

为了突破这一瓶颈,业界开始将目光聚焦于另一个计算架构——存算一体,这是一种将存储和计算功能融合在同一个芯片上的技术架构。

事实上,存算一体的概念由来已久。早在1969年,斯坦福研究所的Kautz等人提出了存算一体计算机的概念。但受限于当时的芯片制造技术和算力需求的匮乏,那时存算一体仅仅停留在理论研究阶段,并未得到实际应用。

而近年来,随着半导体制造技术突破,以及AI等算力密集应用场景的崛起,存算一体技术也得到迅猛发展。2017年,英伟达、微软、三星等提出存算一体原型,随后,国内也诞生一批存算一体芯片企业,苹芯科技是其中之一。

8月8日,苹芯科技正式发布了两款新品,包括存算一体NPU“PIMCHIP-N300”和多模态智能感知芯片“PIMCHIP-S300”,后者采用的是28纳米制程工艺。

苹芯科技CEO杨越在接受21世纪经济报道记者采访时指出,“存算一体就是要在成熟制程实现高级制程的计算能力,这让我们不用非去卷高级制程”。

打破冯·诺依曼架构

在存算一体技术出现之前,计算架构基本都是遵循冯·诺依曼架构,即存储与计算单元分离。

杨越向记者表示,在冯·诺依曼架构下,当计算发生时,数据需要在存储和计算单元直接传输。而在AI算力芯片中,超过90%的功耗都消耗在传输上,所以原来的架构在计算效率上很难支撑AI的发展。

此前,提高计算效率的办法就是升级制程工艺,从最初的65纳米、40纳米已经变成7纳米、5纳米甚至3纳米。然后,这种方法后来也遭遇了瓶颈。

因此2020年前后,国内出现一批公司,他们试图从其他维度去解决计算效率提升的问题。“比如存算一体公司、量子计算公司、光子芯片公司等,这些公司希望去改变芯片的架构来减少数据的搬移。而在不同的技术路径中,存算一体是落地性最强的一个赛道”。杨越说。

在存算一体赛道中,不同公司也存在差异,主要是底层所采用的Memory(存储器)类型不同。有的是用flash做,有的是用静态随机存储器(SRAM)做,还有的是用新型存储器——忆阻器来做。

杨越告诉记者,不同的Memory所具有的特性不同,有的密度高,有的耐久性更好。而苹芯科技选择SRAM,是因为它的产品化能力最强。

“在用户最关心的几个性能维度上,比如读写的延时、耐久性、Memory可擦写的次数、高级制程兼容性等,SRAM的表现都是最优的。另外,因为SRAM在计算机体系中已经存在几十年了,它的成本、良率都很稳定。所以如果想要快速产品化,SRAM会是最优的解决方案”。杨越表示。

另外,即便是使用同一种Memory来做的企业,面向的场景也可能不同。有些公司选择了大算力场景,比如汽车、服务器,苹芯科技选择的则是小端侧场景,比如智能可穿戴设备、智慧家居等。

杨越称,选择小端侧场景,是因为算力整体并不是特别大,但是对于功耗的要求又比较敏感。“做出这一选择,我们是从电路、系统架构、应用、成本等角度进行了综合考量,觉得小端侧场景更适合快速出产品”。

他举例说,“我们团队的背景之前都是做新型存储器的,但我们仍然采用SRAM方案,核心原因就是我们认为这个方案在2-3年内可以产品化,这是符合投资人商业逻辑的,也是符合产业商业逻辑的”。

大厂留下的机会

目前,包括英特尔、三星、IBM、AMD等在内的传统芯片厂商都在布局存算一体,苹芯科技等初创公司如何应对与巨头的竞争?

杨越表示,从行业角度,大家做的事情是趋同的,就是希望让数据的搬运彻底消失。包括苹芯科技在内的一些初创公司,其优势在于选择了存内计算方案,这几乎能将缩短数据距离这件事做到极致化。但大厂们不太可能去这样做,因为他们要考虑通用性的问题,这实际上也为创业公司提供了机会。

据记者了解,存算一体技术可分为三类:近存计算(Processing Near Memory, PNM)、存内处理(Processing In Memory, PIM)和存内计算(Computing In Memory, CIM)。

其中,近存计算是利用先进的封装技术,将计算芯片和存储器封装到一起,通过减少内存和处理单元之间的路径,提高传输效率;存内处理侧重于将计算过程尽可能地嵌入到存储器内部,减少处理器访问存储器的频率;存内计算则是将计算和存储完全融合的技术,通过电路革新或集成额外的计算单元来实现。

因为存内计算对制程工艺要求不高,所以这也是国内创业公司主要选择的技术路径。华西证券在一份研报中指出,近存计算的代际设计成本较低,适合传统架构芯片转入,目前该技术已经十分成熟,被广泛应用于各类CPU和GPU上。而存内计算主要用于算法固定的场景算法计算。

杨越指出,目前电子产品正朝着小型化、智能本地化的方向发展,这给存算一体创业公司带来了很大的市场机遇。

“小型化意味着电池不能做得太大,然后还要去很好地驱动AI计算,这在传统架构中很难实现。比如现在基于传统架构的一些智能设备,当它们打开AI功能时,非常容易发热,原因在于有大量的数据搬运,而存算一体可以将产品体验变得更好”。他说。

据杨越介绍,苹芯科技的产品未来会有两个迭代方向,一是在功能上,要从现在的卷积神经网络(CNN)迭代到Transformer模型,二是在计算效率上,会把制程工艺从现在的28纳米,升级到22纳米、14纳米,最终定格在12纳米。

汽车焦点更多>>

2024年舟山市卫生健康委员会部分直属事业单位招聘事业单位工作人员公告 2024年山东省产品质量检验研究院招聘工作人员简章 2024年宜春经济技术开发区招聘窗口服务编外人员公告 2024年厦门市莲花小学顶岗教师招聘简章 丰田埃尔法的插混版,比亚迪帮你出了,预计30万级,年内上市 吉利也要造越野车了,定名牛仔,主打轻户外需求 长安CS75 PLUS 2.0T版要来了,申报图已曝光,12月上市 比亚迪海豹06 GT正式上市,13.68万起,还是后驱 九号发布多款新车!一文看懂九号电动Kz 110配置参数 花粉傻眼!华为Mate70系列手机壳曝光,撞脸友商? 双11手机销量榜出炉:被唱衰的iPhone,又双叒霸榜了! 花粉傻眼!华为Mate70系列渲染图曝光:似曾相识的感觉 合资才是硬道理?实拍东风本田灵悉L,驾控很灵活 红旗国雅出海巴黎车展,气场不输宾利,那叫一个大气 轴距2900mm,搭华为乾崑智驾,家用可以这款看新能源中型SUV 座椅2+2+3布局,续航1200km,20.98万元起,家用可以看这款MPV 阿维塔012联名限量版亮相成都车展,预售价70万元/限定700辆 全新大众途昂PRO实车曝光,封闭式前脸+隐藏式门把手,动力提升 新一代凯迪拉克XT5四驱版开启预售,限时一口价27.99万元起 6/7座可选,2.0T插混+四驱+续航1102km,家用可以看这款新能源SUV 比亚迪海鸥,如何定义“新一代主流代步车”? 比亚迪员工爆料:我们这蛮多本科进来H级的,在这干4年,级别没长 吉利曾拥有过的五大子品牌,每一个都红极一时,可惜现在只剩一个 宝马上演“川剧变脸”,7月官宣全系涨价,不到俩月重回价格战 奥迪“再出王炸”,暴跌38万,56万一路降至18万 共生美学设计,深蓝L07搭载高通骁龙8155,诠释豪华舒适乘车体验 高通骁龙8至尊版1200元左右的成本,所以手机要涨价? 高通公司首席可持续发展官:终端侧AI是AI的未来 中国电信浙江公司5G联手威星智能,打造未来工厂 库克力推苹果iPad mini 7平板电脑:卓越的性能,全天电池续航